

COUMARINS FROM THE LEAVES OF *PHEBALIUM SQUAMEUM*

FRANCOISE BEVALOT,* JAMES A. ARMSTRONG,† ALEXANDER I. GRAY and PETER G. WATERMAN

Phytochemistry Research Laboratories, Department of Pharmacy (Pharm. Chem.), University of Strathclyde, Glasgow G1 1XW, Scotland, U.K., *Laboratoire de Pharmacognosie, Faculté de Médecine et de Pharmacie, Place St. Jacques, 25030 Besançon, France, †Australian National Botanic Gardens, G.P.O. 1777, Canberra, A.C.T. 2601, Australia

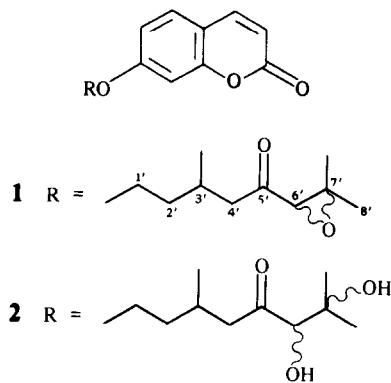
(Received 28 September 1987)

Key Word Index—*Phebalium squameum*, Rutaceae, Boronieae, 7-geranyloxy-coumarins

Abstract—The leaves of *Phebalium squameum* have yielded two novel coumarins identified, on the basis of spectral data, as (+)-7-(6,7-epoxy-3,7-dimethyl-5-oxooctanoxy)-coumarin and (-)-7-(6,7-dihydroxy-3,7-dimethyl-5-oxooctanoxy)-coumarin

In a recent revision of the genus *Phebalium* Vent. Wilson [1] recognized the existence of 44 species distributed throughout Australia, Tasmania and New Zealand (North Island). Previous phytochemical studies have revealed a number of species to contain coumarins, notably furocoumarins [2], while furoquinoline alkaloids have been reported from *P. nudum* Hook. [3]. The present paper reports the isolation of two novel coumarins from a small sample of the previously unworked species *P. squameum* (Labill.) Engl.

Column chromatography of a petrol (bp 40–60°) extract of the leaves over silica gel followed by centrifugal prep. TLC of fractions from the column yielded two major compounds both of which quenched (F_{254}) and fluoresced (blue, 366 nm) in UV light. Despite giving a positive reaction with Dragendorff's reagent MS indicated that neither compound contained nitrogen while both had the spectral characteristics of simple 7-alkoxy coumarins [4].


Compound **1** ($C_{19}H_{22}O_5$) showed in the 1H NMR spectrum signals characteristic of a 7-oxycoumarin (Table 1). This was confirmed by the EIMS which gave a major ion at m/z 162 [$C_9H_6O_3$] $^+$ for the coumarin nucleus together with a base peak m/z 169 [$C_{10}H_{17}O_2$] $^+$ for the C-7 substituent. Analysis of non-coumarin protons in the 1H NMR spectrum with the aid of decoupling experiments indicated the sequence $-\text{O}-\text{CH}_2-\text{CH}_2-\text{CH}(\text{Me})-\text{CH}_2-\text{CO}-$. The remaining signals were made up of methyl singlets resonating at δ 1.25 and 1.41 and a methine singlet at δ 3.35. These can be assigned to H-6 and the C-7 methyl substituents of a 6,7-epoxygeranyl unit (epoxy ν_{max} 920 cm^{-1}) so allowing the formulation of the unusual 5-oxo-6,7-epoxygeranyloxy side chain and structure. The ^{13}C NMR spectrum was in full agreement with this proposal.

Compound **2** ($C_{19}H_{24}O_6$) was more polar than **1** and exhibited an IR band for OH. The 1H NMR spectrum (Table 1) was comparable to that of **1** in most respects but revealed changed chemical shifts for H-6 (δ 4.96) and the C-7 methyls and additional broad signals (exchangeable with D_2O) for two OH protons. These changes are compatible with the assignment of structure **2**.

To our knowledge this is the first report of either **1** or **2**. Related 7-geranyloxy coumarins have been encountered in other rutaceous taxa including *Aegle marmelos* Corr., *Citrus paradisi* Macfad. and *Geyeria parviflora* Lindl. [2] but this is the first time they have been encountered in *Phebalium*.

Table 1 1H NMR assignments for **1** (360 MHz) and **2** (250 MHz) run in CDCl_3

H	1	2
3	6.21 d (9.5)	6.25 d (9.5)
4	7.61 br d (9.5)	7.64 br d (9.5)
5	7.33 d (8.6)	7.36 d (8.6)
6	6.80 dd (2.3, 8.6)	6.83 dd (2.3, 8.6)
8	6.76 br d (2.3)	6.80 br d (2.3)
1'	4.03 t (6.3)	4.06 t (6.6)
2'	1.70 m	1.72 m
2'	1.83 m	1.87 m
3'	2.33 m	2.38 m
3'-Me	0.99 d (6.6)	1.01 d (6.8)
4'	2.44 dd (7.7, 16.5)	2.60 dd (7.7, 17.4)
4'	2.58 dd (5.6, 16.5)	2.82 dd (5.8, 17.4)
6'	3.35 s	3.96 br s
Me	1.25 s	1.20 s
Me	1.41 s	1.29 s
OH		2.39 br s
OH	--	3.70 br s

EXPERIMENTAL

Plant material. A leaf sample of *P. squameum* was collected from cultivated material at the Australian National Botanic Gardens in September 1985 and a voucher specimen (No. 69802) has been deposited in the Herbarium of ANBG.

Extraction and isolation. The ground leaves (19 g) were extracted with petrol (bp 40–60°) to exhaustion. The concd extract was subjected to CC over silica gel eluting with petrol (bp 60–80°) and then petrol containing increasing amounts of EtOAc. Fractions were monitored by TLC and those containing comparable mixtures were bulked and purified by centrifugal PTLC (silica gel; solvent, EtOAc–petrol gradients). Two compounds, (visualized in UV light, 366 nm), were isolated as oils; **1** (12 mg, R_f 0.43—solvent EtOAc–petrol, 1:1) and **2** (14 mg, R_f 0.29—solvent as **1**).

7-(6,7-epoxy-3,7-dimethyl-5-oxooctanoxy)-coumarin (1). $[\alpha]_D^{25} +3.6^\circ$ ($CHCl_3$, c 0.23). Found M^+ 330 1465, $C_{19}H_{22}O_5$ re-

quires 330.1467. UV λ_{max} (EtOH) nm 238 sh, 250 sh, 300 sh, 324 IR ν_{max} (liq. film) cm^{-1} 2960, 2930, 1732, 1715, 1612, 1510, 1400, 1295, 1281, 1232, 1133, 920, 836. ^1H NMR (360 MHz, $CDCl_3$) see Table 1. ^{13}C NMR (90.56 MHz, $CDCl_3$) ppm δ at 17.9 (3'-Me), 19.4 (C-7'), 24.2 (C-8'); τ at 35.1 (C-2'), 47.4 (C-4'), 66.0 (C-1'), d at 25.6 (C-3'), 64.9 (C-6'), 100.9 (C-3), 112.3 (C-6, C-8), 128.4 (C-5), 143.1 (C-4), s at 60.0 (C-7'), 112.0 (C-10), 155.3 (C-9), 160.6 (C-7)*, 161.6 (C-2)*, 205.3 (C-5'), *assignments interchangeable, EIMS m/z (rel. int.) 330 [$M]^+$ (40), 315 (14), 215 (20), 189 (2), 175 (19), 169 (100), 162 (87), 144 (78), 111 (15), 105 (19), 95 (54), 89 (25), 71 (14).

7-(6,7-Dihydroxy-3,7-dimethyl-5-oxooctanoxy)-coumarin (2) $[\alpha]_D^{25} -28.6^\circ$ ($CHCl_3$, c 0.21). Found M^+ 348 1572, $C_{19}H_{24}O_6$ requires 348.1572. UV λ_{max} (EtOH) nm 238 sh, 250 sh, 300 sh, 324 IR ν_{max} (liq. film) cm^{-1} 3440, 2960, 2930, 1730, 1708, 1612, 1510, 1352, 1295, 1283, 1232, 1128, 837. ^1H NMR (250 MHz, $CDCl_3$) see Table 1. EIMS m/z (rel. int.) 348 [$M]^+$ (1), 330 (1), 290 (31), 259 (19), 215 (32), 175 (22), 162 (43), 145 (10), 134 (32), 129 (100), 111 (34), 89 (11), 71 (24).

Acknowledgements—The authors wish to thank Dr I. H. Sadler and Dr D. Reed, Department of Chemistry, Edinburgh University, for the high-field NMR spectra and Dr P. Bladon, Department of Pure and Applied Chemistry, Strathclyde University for mass spectra.

REFERENCES

1. Wilson, P. G. (1970) *Nuytsia* **1**, 1
2. Gray, A. I. (1983) *Chemistry and Chemical Taxonomy of the Rutales* (Waterman, P. G. and Grundon, M. F. eds), p. 97 Academic Press, London.
3. Mester, I. (1983) *Chemistry and Chemical Taxonomy of the Rutales* (Waterman, P. G. and Grundon, M. F. eds), p. 31 Academic Press, London
4. Murray, R. D. H., M  ndez, J. and Brown, S. A. (1982) *The Natural Coumarins* Wiley, Chichester.